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Experiment 11

Model prediction2

The goal of this section is to derive model predictions for estimation responses in Experiment 1. We model target3

location s as a two-dimensional vector corresponding to the target’s horizontal and vertical coordinates. We denote4

the observer’s estimate (saccade endpoint) of s by x. We assume x follows a two-dimensional Gaussian distribution5

with mean s and covariance matrix 1
J I, where J is a scalar. This means that the magnitude of the estimation error,6

ε≡ ||x− s||, follows a Rayleigh distribution with parameter 1√
J
.7

Adopting a common formulation of the variable-precision model (van den Berg et al., 2012), we assume that8

precision, J, is itself a random variable that follows a gamma distribution with mean J̄ and scale parameter τ. Our9

extension of the model allows the priority-specific J̄ to vary; τ is fixed across conditions. We denote the mean total10

amount of available resource, the sum of the priority-specific precisions, as J̄total.11

Resource allocation strategies12

In Experiment 1, we test three models: the Proportional, Flexible, and Minimizing Error model. The models differ in13

how resource is allocated amongst the different items. We denote the proportion allocated to the high, medium, and14

low item as phigh, pmed, and plow, respectively.15

In the Proportional model, observers allocate resources equivalently to the experimental probe probabilities, i.e.16

phigh = 0.6, pmed = 0.3, plow = 0.1. Its two free parameters are total resources J̄total and scale parameter τ. In the Flexible17

model, the proportions allocated to each priority condition are fitted as free parameters. Thus, this model makes no18

hypothesis about how observers are allocated resource, only serves to describe what they do. Its free parameters are19

then J̄total, τ, phigh, and pmed.20

The Minimizing Error model is a normative model in which the observer allocates resources in order to minimize

expected behavioral cost across the experiment. We assume that the cost on a single trial is related to the magnitude ε
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of the estimation error on that trial through a power law:

Cestimation(ε) = ε
γ,

where γ > 0. Suppose now that on a given trial, the observer has allocated mean resource J̄ to the probed stimulus.

The expected cost on that trial is then an average over the errors ε that could occur on that trial:

C̄estimation(J̄)≡ E(Cestimation|J̄)

=
∫

ε
γ p(ε|J̄)dε

=
∫

ε
γ

∫
p(ε|J)p(J|J̄)dJdε.

We now substitute the Rayleigh distribution for p(ε|J) and the gamma distribution for p(J|J̄) to evaluate this expres-

sion, where we write k ≡ J̄
τ
:
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where we assumed that γ < 2k.21

So far, we have considered a trial with a given J̄. Now, we ask how, for a given J̄total, τ, and γ, the observer should

set phigh, pmed, and plow to minimize the expected cost across the entire experiment. We refer to this expected cost as

the “overall expected cost” (OEC); it is equal to

OEC(phigh, pmed, plow) = 0.6C̄(phigh · J̄total)+0.3C̄(pmed · J̄total)+0.1C̄(plow · J̄total).

We denote the resulting cost-minimizing proportions by p∗high, p∗med, and p∗low. Each of these is a function of J̄total, τ,22

and γ.23

Estimation of p∗high, p∗med, and p∗low. We assume the observer calculates and uses these cost-minimizing propor-24

tions. While the brain may be able to do this optimization in a way we do not even begin to try to answer, we find25

the values of p∗high, p∗med, and p∗low with fmincon in MATLAB’s Optimization Toolbox (MathWorks). We begin the26

optimization from ten different starting points, to lower the probability of finding a local minimum, and choose the27

proportions corresponding to the lowest OEC. Note that this optimization is different from the optimization completed28

to estimate the ML parameters (explained below): the former is necessary to calculate the log-likelihood of a single29

parameter combination, and is thus completed thousands of times within one ML parameter estimation.30
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Maximum-likelihood parameter estimation31

For each participant and each model, we estimated the parameters using maximum-likelihood estimation. The likeli-

hood of the parameter combination θ for a given trial is defined as p(data|model,θ). In Experiment 1, the only data is

the saccade landing, ŝ.

p(data |model,θ) = p(ŝ |model,θ)

=
∫∫

p(ŝ | x)p(x | s,J)dx p(s)p(J | J̄,τ)dJ

=
∫∫

δ(ŝ−x)N
(

x;s,
1
J

I
)

dx p(s)p(J | J̄,τ)dJ

=
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N
(
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I
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∫
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Notice that
∫∫

p(ŝ | x)p(x | s,J)dx p(s)p(J | J̄,τ)dJ can be simplified to
∫

s p(ε | J)p(J | J̄,τ)dJ. We numerically32

integrate over J with 500 equally spaced bins. To calculate the log-likelihood, we take the logarithm of this value. To33

calculate the log-likelihood of a particular parameter combination θ, we sum the logs of the likelihoods across trials.34

We used the optimization algorithm Bayesian Adaptive Direct Search (BADS; Acerbi & Ma, 2017) in MATLAB,35

which combines mesh grid and Bayesian optimization methods. We completed 50 optimization runs with different36

starting values for each participant and model, to lower the probability of a local minimum. We took the minimum37

negative log-likelihood of all the runs as our estimate of the maximum-likelihood, and the corresponding parameter38

combination as our ML parameter estimate.39

Experiment 240

Model prediction41

In Experiment 2, we model the memory estimation as described in Experiment 1. The goal of this section is to derive42

model predictions for the additional behavioral data: the circle wager.43

We assume that on every trial, the observer chooses a circle radius r noisily around the value that maximizes the44

expected utility (EU) of that trial. The EU is calculated as the product between the utility of setting a circle with radius45

r and the probability that the true stimulus lies within the circle bounds (i.e., a hit). The observer calculates the utility46

as the number of points awarded for circle radius r raised to a power α that accounts for risk preferences, 120e−rα. An47

α > 1 corresponds to risk-seeking behavior (corresponding to smaller circles on average), while an α < 1 corresponds48

to risk-averse behavior (corresponding to larger circles on average).49

The probability of a hit is equivalent to the bounded integral of the posterior p(s|x) over the region described by the

circle. For a two-dimensional Gaussian distribution, this is equivalent to a cumulative Rayleigh distribution evaluated
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at r:

phit(r,J)≡ p(ε≤ r|J)

=

(
1− e−

r2J
2

)
.

We assume that the observer’s decision noise follows a softmax rule, such that the probability of choosing r is

p(r|J) ∝ exp(βEU(r,J))

= exp(β ·utility(r) · phit(r,J))

= exp
(

β ·120e−rα

(
1− e−

r2J
2

))
.

Here, β, the inverse temperature parameter, controls the decision noise level: a lower β corresponds to more decision50

noise.51

Resource allocation strategies52

In Experiment 2, we test four models: the Proportional, Flexible, Minimizing Error, and Maximizing Points models. In53

the Proportional model, observers allocate resources equivalently to the experimental probe probabilities, i.e. phigh =54

0.6, pmed = 0.3, plow = 0.1. Its four free parameters are total resources J̄total, scale parameter τ, risk preference α, and55

inverse noise temperature β. In the Flexible model, the proportions allocated to each priority condition are fit as free56

parameters. Its six free parameters are then J̄total, τ, α, β, phigh, pmed. In the Minimizing Error model, observers allocate57

resource in order to minimize expected behavioral loss across the experiment exactly as described in Experiment 1.58

In Experiment 2, this strategy is a myopic: the observer does not take into account the subsequent decision they must59

make, but first maximizes performance in terms of estimation error, then maximizes EU. Its five free parameters are60

J̄total, τ, γ, α, and β. The optimal resource allocations p∗high, p∗med, p∗low depend on parameters J̄total, τ, and γ.61

While observers in all models maximize the EU on every trial for a given J, the Maximizing Points model observer62

additionally allocates resources in order to maximize the expected utility across the entire experiment. We define the63

cost of a single trial as the negative EU on that trial:64

Cwager(r|J)≡−
(

1− e−
r2J
2

)
·120e−rα.

The expected cost on that trial, for a given J, is an average of the costs for all possible radii r reported on that trial.

However, J itself is a random variable, drawn from a distribution determined by a priority-specific J̄. Thus, we must

also marginalize over J to calculate the expected cost of a trial in each priority condition:

C̄wager(J̄)≡ E(Cwager|r,J)

=
∫

Cwager(r|J̄)p(r|J)dr

=
∫∫
−EU(r,J)p(r|J)p(J | J̄,τ)drdJ
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We numerically integrated over r and J to obtain the C̄wager for a given J̄. The OEC for this experiment is thus:

OEC(phigh, pmed, plow) = 0.6C̄(phigh · J̄total)+0.3C̄(pmed · J̄total)+0.1C̄(plow · J̄total).

In the Maximizing Points model, the cost-minimizing proportions p∗high, p∗med, and p∗low are a function of all parameters65

J̄total, τ, α, and β. We obtain these values through the optimization methods described in Experiment 1.66

Maximum-likelihood parameter estimation67

Again, for each model and participants, we estimated the parameters that maximized the log-likelihood of the data68

given the model parameters. For Experiment 2, data consists of both the memory estimation and the post-decision69

wager. Thus, the likelihood depends on r in addition to ŝ. In our calculation of the log-likelihood, we assume these70

measures are independent variables.71

p(data |model,θ) = p(ŝ,r |model,θ)

=
∫∫

p(ŝ | x)p(x | s,J)dx p(s)p(r | J)p(J | J̄,τ)dJ

=
∫

p(ŝ | s,J)p(s)p(r | J)p(J | J̄,τ)dJ

∝

∫
s

p(ŝ | s,J)p(r | J)p(J | J̄,τ)dJ

We used the same optimization method as described in Experiment 1.72
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Optimal resource allocation73
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Figure 1: Optimal resource allocation as a function of total resource, J̄total for different models (indigo: Minimizing

Error, orange: Maximizing Points, green: Proportional). Each side of the triangle corresponds to the probe probability

of or proportion allocated to each priority condition. With a lower J̄total, indicated by a lighter color, the models make

very different predictions. The Minimizing Error model predicts more equal allocation than proportional to the probe

probability, while the Maximizing Points model predicts dropping the low-priority target. As J̄total increases, both

models predict an allocation closer to the experimental probe probabilities. The prediction for the Proportional model

is always the same as the experimental probe probabilities. Note that this plot was created by varying J̄total from 1 to

10, and keeping τ = 0.4,α = 1,β = 1, and γ = 1.
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Figure 2: Optimal proportion allocation (tip of arrow) as a function of experimental probe probability (base of arrow)

for the Minimizing Error model, for each participant in Experiment 2. Each side of the triangle corresponds to the

probe probability of or proportion allocated to each priority condition. The Minimizing Error model predicts that the

optimal allocation is more equal than the experimental probe probabilities, indicated by the arrows pointing toward

the center of the triangle. .

Permutation test74

In Experiment 2, we found a positive correlation between error magnitude and the radius of the circle wager. We75

believe this correlation was driven by a knowledge of internal noise, but it is possible that it is driven by a knowledge76

of stimulus-dependent noise. For example, in orientation perception, targets with orientations closer to the cardinal axis77

are perceived more accurately than obliquely-oriented objects (Girshick, Landy, & Simoncelli, 2011). We considered78

that there was a similar effect for memories of locations; perhaps objects closer to the cardinal axes are remembered79

with a different fidelity than those farther away. We did a regression to see if there was a trend between distance from80

cardinal axis (up to 45◦) and estimation error. The oblique effect in memory of locations of objects was inconclusive.81

For seven of eleven participants, stimulus location did not significantly predict error (p > 0.05), but the remaining82

four participants had greater error when moving farther from the cardinal axes (M ± SEM regression weights: 1.40±83

0.84, p < 0.05).84
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Because there is not a clear relationship between stimulus value and error, we cannot simply regress out any85

relationship between the two. However, there may still be some stimulus-dependent relationship that can still be86

driving the correlation between error and circle size. We decided to conduct a permutation test, which allows us to87

investigate this question without needing to describe or parameterize the relationship between the stimulus location88

and error. This permutation test followed the following steps for each participant and priority condition:89

1. Bin error and circle size data according the angular distance of the target from the horizontal axis (10◦ to 80◦ in90

10◦ increments. Note that 10◦, 170◦, 190◦, and 350◦ are all 10◦ away from horizontal axis)91

2. Permute circle size within each bin92

3. Combine bins93

4. Compute correlation between error and circle size Repeat steps 2 through 4 a thousand times94

In step one, we combined data according to their angular distance from horizontal in an effort to increase the95

number of trials per bin. This grouping assumes that the main stimulus-dependent noise would be relative to the96

cardinal axes, not any hemispheric differences. In an ideal scenario, we would then be able to conduct a correlation97

within each bin. However, there were as few as two trials in one bin, so computing a correlation for each bin was not98

feasible.99

For step two, we performed a special type of permutation called a derangement, in which no element is placed100

its original location. We conducted a derangement because it is more robust to small sample sizes than a regular101

permutation. For example, in a regular permutation of two data points, half of the time you would get the original102

configuration, leading to biased results.103

By completing permutations on multiple small bins within each dataset, the recombined, permuted dataset main-104

tains any correlations that are stimulus-location driven, while removing any relationship driven by a knowledge of in-105

ternal memory fluctuations. Therefore, if the correlation was largely due to the stimulus location, then the correlation106

of the permuted data would still be positive. If, on the other hand, the correlation was driven by internal fluctuations107

that were independent of the location of the stimulus, the positive correlation observed in the non-permuted data would108

be significantly reduced in the permuted data.109

To test if the true correlation was significantly higher than the null correlations, we conducted a Wilcoxon signed-110

rank test between the medians of each null correlation distribution (for each priority and subject) and the respective true111

correlations. We found that the actual correlations (M±SEM : 0.29±0.04) were significantly higher than the median112

of the correlations obtained in the null distribution (M± SEM : −0.007± 0.006;z = −4.69, p < 1e− 5), suggesting113

that the correlation within each priority condition was driven by internal fluctuations in the quality of the memory114

representation above and beyond any location-dependent variation.115

We additionally investigated whether the observed correlation between error and circle size could be explained by116

knowledge of delay. Like before, we first tested if there was a significant change in error as a function of delay. Delay117

did not significantly predict error for nine of eleven participants (p> 0.05), and predicted an 0.10 and 0.11 dva increase118
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in error for every second increase in delay for the other two participants (p < 0.01). We completed a permutation test,119

in which we binned data by participant, priority, and delay time (1 to 4 seconds in 0.5 second increments); deranged120

the circle sizes within each bin; combined data across delay bins; then computed the correlation between error and121

circle size, resulting in a correlation for each participant and priority condition. We repeated this process 1000 times, to122

get a null distribution of correlation coefficients. Like before, we conducted a Wilcoxon signed-rank test between the123

medians of each null correlation distribution (one for each priority and subject) and the respective true correlations. We124

found that the actual correlations (M±SEM : 0.29±0.04) were significantly higher than the median of the correlations125

obtained in the null distribution (M± SEM : −0.004± 0.004;z = −4.53, p < 1e− 5), suggesting that the correlation126

within each priority condition was driven by internal fluctuations in the quality of the memory representation above127

and beyond any delay-dependent variation.128
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